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ABSTRACT
This study describes a novel simulation model of the pro-
cess of product invention. Invention is conceptualized as a
process of directed evolutionary adaptation, on a landscape
of product design possibilities, by a population of profit-
seeking agents (inventors). The simulation experiments ex-
amine the sensitivity of the rate of advance in product fitness
to the choice of search heuristics employed by inventors. The
key finding of the experiments is that if search heuristics are
confined to those which are rooted in past experience, or to
heuristics which merely generate variety, limited product ad-
vance occurs. Notable product fitness advance only occurs
when inventor’s expectations as to the relative fitness of po-
tential product inventions are incorporated into the model
of invention. The results demonstrate the importance of
human direction and expectations in invention. They also
support the importance of formal product / project eval-
uation procedures in organizations, and the importance of
market information when inventing new products.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; I.2.11
[Distributed Artificial Intelligence]: Multi-Agent Sys-
tems; I.2.6 [Learning]: Analogies

General Terms
Genetic algorithm, Economics
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1. INTRODUCTION
The importance of invention and innovation as an engine
for economic growth has long been recognised [22, 23, 18,
1, 17]. The invention of new products can enhance the effi-
ciency with which inputs can be converted into outputs, or
can lead to the qualitative transformation of the structure
of the economy by creating completely new products [5].
The processes of commercial diffusion of new goods have
attracted substantial study, but as noted by [4] (p. 1019):

‘. . . we lack a systematic and empirically vali-
dated theory of invention.’

The lack of a theory of invention leaves open the question
how do inventors actually invent? Given that no inventor
can try all possible combinations of even the set of already
discovered raw components when attempting to invent a
novel product, two further questions arise: what methods
do inventors employ to simplify their task? and what are
the implications of these methods for the rate of inventive
progress in a population of inventors?
A relatively recent development in the analysis of com-

plex economic systems is the use of agent-based modelling
(ABM) [25, 3, 12, 2]. In ABM, the complex system of inter-
est is split into artificial adaptive agents. The interactions,
information flows, and decision processes of these agents
can then be modelled using computer simulation [26]. This
study uses an ABM approach, wherein the agents are in-
ventors, and the activities of these inventors are simulated
under different conditions, in order to obtain insight into the
implications of the rules (search heuristics) governing their
behavior. In turn. this will enhance our understanding of
the role that search heuristics play in the inventive process
for physical goods.
Insight into the process of invention is important for prac-

tical as well as academic reasons. Without a robust model
of invention, manager’s ability to create organizations which
encourage inventive practices is constrained, and policy-makers
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risk making sub-optimal decisions regarding how best to en-
courage invention in society in order to promote long-term
economic growth.
The remainder of this contribution is organized as follows.

Section 2 provides an introduction to the conceptual model
of invention used in this study, followed by a description of
the two main components of the simulation model in Sec-
tion 3. Section 4 outlines the results of the simulations and
finally, conclusions and future work are discussed in Section
5.

2. THE INVENTOR’S PROBLEM
Inventors are faced with three complicating factors when

attempting invention:

• uncertainty as to the payoff to a proposed product
idea,

• interconnected product design elements, and
• vast design spaces.

Inventors do not know the payoff to a new product a pri-
ori its introduction to the market, hence their inventive ef-
forts are driven by guesses as to these payoffs. These may
be incorrect, leading to the invention of poor (unprofitable)
products.
Products consist of systems of components which inter-

act with one another to produce the product’s functionality.
As will be discussed in section 3.1, interconnection between
components produces a rugged product design - payoff land-
scape, which further renders the process of estimating the
payoff to a proposed product invention difficult.
In the case of product invention, there are a huge number

of possible choices of components and related attributes of
these components. This renders the dimensionality of prod-
uct design spaces vast, and makes any attempt to engage in
enumerative invention futile.
The above factors are features of many human decision-

making environments, so how do human decision makers
deal with these ‘hard’ decision environments? Inventors
seek to simplify their task by employing search heuristics.
A search heuristic is defined as a method for searching for
an acceptable solution to a problem without considering all
possible solution alternatives [18, 19]. Search heuristics are
widely used in every-day decision making, either because
of the impossibility of determining and evaluating all pos-
sible solutions to a problem, or because the benefits from
obtaining the best, rather than a good solution to a prob-
lem are outweighed by the extra costs of obtaining the op-
timal solution. In this study, we restrict attention to three
broad classes of search heuristics. Those which stem from
the prior experience of inventors, search heuristics which
guide the inventive process by means of inventor’s expecta-
tions, and search heuristics which embed variety-generating
mechanisms.

2.1 An Evolutionary Perspective on Invention
Evolutionary algorithms such as the GA [8, 6, 7] draw in-
spiration from the process of biological evolution in order to
simulate the evolution of a population of entities over time.
Prima facie, the framework of the GA has the potential to
incorporate several salient aspects of the process of product
invention:

• a population of entities (product designs) which adapt
over time,

• competition for resources amongst inventors (payoff-
seeking behavior),

• reuse of previously invented components, and

• trial-and-error experimentation.

The environment (market) favors (selects) the better in-
ventions from those discovered to date, and through feed-
back mechanisms such as realized profit and increased fund-
ing for research, encourages further related invention by
adapting current product designs. The concept of inven-
tion as the directed recombination (or partial imitation) of
existing technology fragments in novel ways is closely related
to the writings of [22, 23].

2.1.1 Genetic Programming and Invention
Recent work on Genetic Programming [13] provides empir-
ical support for an argument that an evolutionary process
is capable of automatically generating (or inventing) novel
physical products with a desired functionality, and for an ar-
gument that the variety-generation heuristics of reuse and
trial and error are sufficient to generate novel, useful physical
products. Amongst other applications, the GP methodology
has been employed to evolve analog electronic circuits which
achieve a pre-defined functionality [15]. The aim of GP in
this case is to design an analog circuit to achieve a desired
output, given a pre-defined set of electronic components and
circuit topology-modifying functions. The pre-defined com-
ponents and circuit topology-modifying functions define a
mental representation of the problem or alternatively, a de-
sign space, in which a solution will be sought. In design-
ing the circuit, the algorithm must choose the electronic
components (including the optimal values for these compo-
nents, for example the value of a resistor), and determine
the arrangement of these components (architecture). It has
been demonstrated that the method is capable of produc-
ing designs which replicate, and in several cases improve on,
patented electronic circuits. These patented circuits include
a selection of post year-2000 designs which originated in ma-
jor commercial and university research institutions [24, 14,
20, 15].

2.1.2 Distinctions Between Biological and Product
Evolution

Although there are clear parallels between an evolution-
ary process and the process of invention, there are also im-
portant differences (Table 1). The most significant of these
concern the intentionality of inventors. Inventors do not at-
tempt to create novel products randomly, they direct their
efforts towards goals, for example to invent a product with a
set of desired characteristics, based on their expectations as
to the likely fitness (return) that the product would gener-
ate. Inventors also learn over time, both as a result of their
own prior inventive efforts, and as a result of the product
inventions of others (social learning). Invention does not
start with a blank sheet on each inventive trial. Product
inventions are anchored by what has gone before.
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Parallels Differences

Fitness-driven selection Search for new products is guided by inventors’
Population-based search expectations
Distributed learning Inventors do not discard existing design until a
A forgetting process better one is found
Selection, recombination and mutation processes Inventors’ expectations of product fitness are
Adaptation is stochastic and path-dependent subject to error

Inventors consider multiple proto-designs
Invention is anchored in existing designs

Table 1: Summary of similarities and differences between product and biological evolution.

2.2 Model of Invention
The model of invention underlying the simulation study is
outlined in Fig. 1. Inventor’s efforts are grounded (an-
chored) in their existing design. In seeking to improve their
design, they select ideas from other existing products for im-
itation, and also engage in trial and error experimentation.
The proto-inventions (mental ideas for product designs) pro-
duced through the mental application of the variety-generating
heuristics of inventors are filtered through forward-looking
mechanisms (thought experiments and election) which es-
timate the expected returns from proto-inventions. In the
election step, inventors compare the expected return from
the proposed proto-product design with that of their cur-
rent product design and if it is less, the proto-product idea
is discarded and is not physically created. Thought exper-
iments arise as in each inventive trial, inventors consider a
number of possible proto-products, before selecting the best
of these for the election step.
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Figure 1: Model of product invention.

3. SIMULATION MODEL
The two key components of the simulation model are the
landscape generator (environment), and the adaption of the
canonical GA to incorporate the activities and interactions
of the agents (inventors).

3.1 Product Design Landscape
In this study, the product design landscape is defined using
Kauffman’s NK model [9, 10]. The NK model considers the
behavior of systems which are comprised of a configuration
(string) of N individual elements. Each of these elements
are in turn interconnected to K other of the N elements
(K<N). In a general description of such systems, each of
the N elements can assume a finite number of states. If the
number of states for each element is constant (S), the space
of all possible configurations has N dimensions, and contains
a total of

∏N
i=1 Si possible configurations.

In Kauffman’s operationalization of this general frame-
work [10], the number of states for each element is restricted
to two (0 or 1). Therefore the configuration of N elements
can be represented as a binary string . The parameter K,
determines the degree of fitness interconnectedness of each
of the N elements and can vary in value from 0 to N-1.
In one limiting case where K=0, the contribution of each
of the N elements to the overall fitness value (or worth) of
the configuration are independent of each other. As K in-
creases, this mapping becomes more complex, until at the
upper limit when K=N-1, the fitness contribution of any of
the N elements depends both on its own state, and the si-
multaneous states of all the other N-1 elements, describing
a fully-connected graph.
If we let si represent the state of an individual element

i, the contribution of this element (fi) to the overall fitness
(F ) of the entire configuration is given by fi(si) when K=0.
When K>0, the contribution of an individual element to
overall fitness, depends both on its state, and the states of K
other elements to which it is linked (fi(si : si1, ..., sik)). The
same fitness function as [10] is adopted, and the overall fit-
ness of each configuration is calculated as the average of the
fitness values of each of its individual elements. Therefore,
if the fitness values of the individual elements are f1, ..., fN ,

overall fitness (F ) is F =
[ ∑N

i=1 fi

N

]
. Altering the value of K

affects the ruggedness of the described landscape (graph),
and consequently impacts on the difficulty of search on this
landscape [9], [10]. As K increases, the landscape becomes
more rugged, and the best peaks on the landscape become
higher, but harder to find. The strength of the NK model in
the context of this study is that by tuning the value of K it
can be used to generate product design landscapes (graphs)
of differing degrees of local-fitness correlation (ruggedness).
Physical product designs are characterized as consisting

of N attributes [16]. Each of these attributes represents a
choice of design attribute, that an inventor faces. Hence,
a specific design configuration s, is represented as a vector
s1, . . . , sN where each attribute can assume a value of 0 or
1 [21]. The vector of attributes represents an entire product
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design, hence it embeds a choice of physical components,
ancillary choices concerning these components (color, fin-
ish), the choice of configuration of the components (their
tolerances, directional orientation, physical linkage struc-
ture), and the choice of production technologies required
to manufacture the product design [11]. Good consistent
sets of components and attributes, correspond to peaks on
the product design landscape. Adopting a biological anal-
ogy, the physical design for a product (its components, their
connection architecture, and the instructions for making the
product) represents a genotype (basic genetic information),
and the characteristics of the resulting physical structure
corresponds to a phenotype (the behavioral manifestation
of the genetic information). The mapping of a vector of
product characteristics into a measure of utility or economic
worth, is similar in concept to phenotypic fitness-mapping
in evolutionary biology.

3.2 Defining the Simulation Model
The simulation model is defined as a synthesis of the NK
framework, and an adapted form of the canonical GA (Ta-
ble 2). The product design landscape, whereon a popula-
tion of inventors are searching for ever-better designs, is
defined using a binary representation. The adaptive ef-
forts of inventors are governed by variety-generating heuris-
tics including imitation, and trial and error, where the ac-
tion of the crossover operator in the GA corresponds to
imitation, and the mutation operator corresponds to trial
and error. Experience-based heuristics influence the search
process by means of anchoring and selection mechanisms,
and expectations-based heuristics influence the search pro-
cess through thought experiments and election mechanisms.
The election mechanism is implemented through the pro-
cess of fitness based selection, and thought experiments are
the equivalent of a local search process where a number of
potential children (new ideas) are generated and the child
with the best fitness is subject to the election step. The
pseudo-code for the simulator is presented below.

Repeat ‘T’ times
Create Product Landscape

Repeat for each string ‘i’ (active product design) in the
population

Calculate shared fitness values for each string
in the population

For x=1:a (‘a’ thought experiments)
Select another design ‘j’ in the population
Recombine design ‘i’ and ‘j’

to produce new design ‘k’
Apply mutation operator to new design ‘k’
If design ‘k’ is best design of thought experiments

so far, store design ‘k’ in design ‘best’
End (for loop)

If design ‘best’ is better than the original design ‘i’,
replace design ‘i’ with design ‘best’
(election operator)

End (Repeat for each string)
(end of generation)

Output results for simulation run
End (Repeat ‘T’ loop)

4. RESULTS
All results are averaged across 30 separate simulation runs.
In each simulation run, the NK landscape is specified anew,
and the positions of the initial product designs are randomly
selected at the start of each run. A value of N=96 is selected
(arbitrary) in defining the landscapes in this simulation. A
series of landscapes of differing K values (4 and 6), represent-
ing differing degrees of product-design attribute fitness inter-
connectivity, were used in the simulations. Binary crossover
is applied with a probability of 0.60, and the mutation rate
is selected to produce an expected mutation rate of one bit
in each product design string in each inventive trial.

4.1 Trial and Error
Fig. 2 and Tables 3 to 4, compare the rate of product fit-
ness advance of a population of inventors using only a trial
and error invention heuristic vs a population of inventors
using trial and error plus an election heuristic. Results are
provided for all three levels of thought experiment (where
number of thought experiments = 1, 3 & 5), and two levels
of landscape ruggedness (where K = 4 & 6).

4.2 Trial and Error + Imitation
These simulations compare the rate of inventive advance of
a population of inventors using a trial and error plus binary
recombination, when an election heuristic is (vs is not) em-
ployed. The results of these simulations are presented in
Fig. 3 and Tables 5 to 6.

4.3 Discussion
Trial and error invention (random mutation of product de-
signs) with no election and only one thought experiment
(TE), performs poorly producing no fitness advance in prod-
uct designs over time. Trial and error invention without elec-
tion corresponds to a random walk on the product-design
landscape. The exclusion of election and multiple thought
experiments means that there is no look ahead capability in
the inventive process. Variety generation is not guided by
expectations, and the failure of these simulations to demon-
strate inventive progress can be interpreted as a demonstra-
tion of the importance of inventors’ expectations in driving
the advance of product designs. The same result is observed
across both landscapes (K=4 & 6), suggesting that expecta-
tions play an important role in guiding invention on product
design landscapes of varying degrees of ruggedness.
The addition of an election operator leads to faster prod-

uct design advance in all the experiments at the end-point of
200 trials (significant at 5% level). Considering the results
for each level of thought experiments, it is evident that an
election heuristic noticeably improves the rate of product
advance when inventors use trial and error invention and
only carry out a single thought experiment. As the number
of thought experiments increases to 3 & 5, the benefits of
an election heuristic reduce (but remain statistically signifi-
cantly different at the 5% level). This suggests that election
and thought experiments can at least partially substitute for
one another. If multiple thought experiments are carried out
by an inventor, an election mechanism becomes less impor-
tant. These results hold over all three forms of landscape.
Looking at the results from the simulations where inven-

tors engage in both trial and error experimentation and imi-
tation from existing designs, a similar picture emerges. The
inclusion of election or thought experiments increases the
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Product Invention Parameter Descriptions
Model Parameters:
R {0, 1}N

φ Point mutation, crossover, election, selection biased
by shared-fitness, thought experiments, anchoring

f : R → F As for NK model - fitnesses randomly assigned to r ∈ R
F {0-1}
>F Standard order on �

Table 2: Operationalization of model of product invention as an adapted combination of the NK and GA
frameworks.
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Figure 2: Trial and error + election vs trial and error and no election, for three levels of thought experiment
(1,3 & 5), and for K=6. Fitnesses graphed are those after the first iteration (generation), and thereafter
every tenth iteration up to 200 iterations.

Iteration BTE (no election) BTE (with election)
TE=1 TE=3 TE=5 TE=1 TE=3 TE=5

1 0.4990 0.4983 0.5000 0.4991 0.5002 0.4999
10 0.4997 0.5456 0.5663 0.5220 0.5502 0.5661
50 0.5018 0.6215 0.6573 0.5812 0.6363 0.6598
100 0.5019 0.6435 0.6862 0.6192 0.6735 0.6923
150 0.5022 0.6505 0.6980 0.6417 0.6912 0.7062
200 0.5017 0.6541 0.7044 0.6564 0.7019 0.7135

Table 3: Average populational fitness, trial and error (BTE) (no election) vs trial and error + election
heuristic, for K=4 landscape, and number of thought experiments=1,3 & 5.

rate of inventive advance (increase in fitnesses significant at
5% level).
In assessing the results from the differing levels of thought

experiments, it is important to remember that the thought
experiments mechanism does not require that inventors can
make perfect assessments of the fitness of several potential
product designs ex-ante their testing in the marketplace.
Rather it only requires that inventors can assess the rela-
tive fitness of the designs. A similar comment can be made

in respect of the election heuristic, in that inventors only
need to be able to identify whether the new product de-
sign is better than their existing design. It is not necessary
that inventors are able to precisely assess the worth of the
new design. Once inventors can make reasonably accurate
assessments of the relative fitness of proto-product designs,
product fitness advance is assured under a simple trial and
error search heuristic when inventors use an election mecha-
nism, or when they engage in multiple thought experiments.
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Iteration BTE (no election) BTE (with election)
TE=1 TE=3 TE=5 TE=1 TE=3 TE=5

1 0.4991 0.4990 0.5006 0.4991 0.5009 0.5004
10 0.4984 0.5516 0.5715 0.5252 0.5553 0.5715
50 0.4991 0.6174 0.6536 0.5855 0.6366 0.6596
100 0.4991 0.6331 0.6788 0.6201 0.6702 0.6904
150 0.4984 0.6375 0.6888 0.6409 0.6871 0.7036
200 0.4983 0.6402 0.6927 0.6548 0.6972 0.7109

Table 4: Average populational fitness, trial and error (BTE) (no election) vs trial and error + election
heuristic, for K=6 landscape, and number of thought experiments=1,3 & 5.
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Figure 3: Imitation + trial and error without election vs imitation, trial and error, and election, for three
levels of thought experiment (1,3 & 5), for K= 6.

Election and thought experiments, in other words inventors’
expectations, matter.

4.3.1 Election Mechanisms
Election mechanisms represent a sanity check before an

existing product design is discarded in favor of a new one.
Does it seem likely that adopting the proposed new product
design would lead to a higher return than would otherwise
occur? Examples of election mechanisms abound in busi-
ness, ranging from formal project appraisal systems, to pro-
cedures for monitoring the performance of on-going product
development projects. The simulation results support the
assertion that inventors (managers) should undertake a for-
mal assessment of the worth of a proto-product design, be-
fore undertaking the inventive step of actually creating the
product.

4.3.2 Thought Experiments
Thought experiments can be considered as corresponding

to the openness of an inventor to new ideas. The greater the
number of mental thought experiments, or product design
ideas, which inventors consider when creating new products,

the faster the rate of product fitness advance. Inventors, or
in a corporate setting R&D departments, which generate
small numbers of product design alternatives are less likely
to prosper. Factors which could reduce the openness of R&D
departments to new ideas include an inward-looking culture,
or an organizational structure which fails to encourage and
facilitate a flow of market information from the external
environment to the R&D department.
Each thought experiment requires that an inventor con-

sider what elements could be imitated from other products,
and what elements of the resulting proto-product design
should be incrementally altered by trial and error. Im-
plicitly, the selection process when deciding what to imi-
tate requires that inventors consider what other products
already exist, and also the worth of these products. There-
fore, the undertaking of multiple thought experiments re-
quires a quality conduit of market information. The better
the flow of market information to the inventor, the easier it
is to generate multiple proto-product designs, and the more
accurate the inventor’s estimate of their likely fitness. In-
ventors or organizations with good communication channels
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Iterations Bin C&BTE (no election) Bin C&BTE (with election)
TE=1 TE=3 TE=5 TE=1 TE=3 TE=5

1 0.4971 0.4996 0.5014 0.5003 0.4971 0.4983
10 0.4990 0.5803 0.6121 0.5535 0.5873 0.6115
50 0.5270 0.6781 0.7139 0.6272 0.6815 0.7114
100 0.5339 0.7031 0.7280 0.6738 0.7158 0.7319
150 0.5343 0.7082 0.7311 0.6985 0.7277 0.7386
200 0.5317 0.7095 0.7334 0.7120 0.7339 0.7423

Table 5: Average populational fitness, imitation, trial and error (no election) vs imitation, trial and error +
election, for K=4 landscape, and number of thought experiments=1,3 & 5.

Iterations Bin C&BTE (no election) Bin C&BTE (with election)
TE=1 TE=3 TE=5 TE=1 TE=3 TE=5

1 0.4990 0.5009 0.5017 0.4990 0.5003 0.4993
10 0.4980 0.5680 0.5964 0.5497 0.5808 0.6000
50 0.5112 0.6503 0.6918 0.6088 0.6662 0.6853
100 0.5120 0.6801 0.7117 0.6416 0.6995 0.7158
150 0.5140 0.6876 0.7173 0.6626 0.7139 0.7279
200 0.5146 0.6913 0.7205 0.6770 0.7233 0.7342

Table 6: Average populational fitness, imitation, trial and error (no election) vs imitation, trial and error +
election, for K=6 landscape, and number of thought experiments=1,3 & 5.

between the market and inventors (and in organizations,
between members of the design team), will find it easier
to undertake multiple thought experiments. Therefore the
simulation results are consistent with a proposition that in-
vention produces better results when it is well-informed by
market information.

5. CONCLUSIONS
In order to investigate the role that search heuristics play
in the inventive process for physical products, a conceptual
model of the process of product invention was developed and
then operationalized in a series of simulation experiments.
It was demonstrated that despite the posited importance of
the basic variety-generating heuristics of trial and error and
imitation, they are not sufficient in themselves to produce
substantial progress in product invention. Inventors’ expec-
tations and consequent direction of the inventive process,
play a critical role in ensuring inventive advance. Future
work will extend this initial study by considering additional
parameter settings, additional forms of imitation operator,
and by incorporating noisy expectations as to proto-product
design payoffs.
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